	Name:	
3.1 Energetics		
ms		
Date:		
Time:		
Total marks availa	ble:	
Total marks achiev	/ed:	

Question number	Answer	Additional guidance	Marks
(a) (i)	(bonds broken) 3861 (kJ)		1
(ii)	(bonds made) 4649 (kJ)		1
(iii)	M1 subtraction of Σ(bonds made) made and Σ(bonds broken)	In (iii) ECF from (i) and (ii) must be applied Subtraction can be in any order	3
	M2 correct evaluation of the calculation shown in M1 M3 If Σ (bonds made) > Σ (bonds broken) final answer must	IGNORE sign	
	be negative If Σ(bonds made) < Σ(bonds broken) final answer must be positive (and + sign given)	Expected final answer is -788 (kJ/mol) -788 with no working scores 3 (+) 788 scores 2	

(b)	An explanation that links together the following two points:		
	M1 more energy is given out when the bonds are made	If state/imply that energy required to make bonds OR If state/imply that energy released when bonds are broken scores 0/2	2
	M2 than is taken in when the bonds are broken	ACCEPT correct reverse argument	

Question number	Answer	Additional guidance	Marks
(c)	↑	IGNORE horizontal axis drawn	3
	hydrazine + hydrogen peroxide energy	IGNORE enthalpy change shown	
	nitrogen + water	IGNORE activation energy shown	
	M1 right hand line below left hand line		
	M2 correct names/formulae of both reactants	If only use words reactants (on left) and	
	M3 correct names/formulae of both products	products (on right) award 1 mark from M2 and M3	

Q2.

Question number	Answer		Additional guidance	Mark
(a)	thermometer reading at end/oC thermometer reading at start/oC temperature rise/oC	(26.8) 18.7 8.1	1 mark for temperature at start 1 mark for temperature rise consequential on readings	
				2

Question number	Answer	Mark
(b)(i)	29.5	1

Question number	Answer	Mark
(b)(ii)	20.8	1

Question number	Answer	Additional guidance	Mark
(c)	 Calculation of volume/mass of mixture Calculation of temperature increase Substitution of values into q=mcΔT Calculation of heat energy released with unit Example calculation: 20.0 + 20.0 = 40.0 (cm³) (1) 30.0-18.5 = 11.5 (°C) (1) q = 40.0 × 4.2 × 11.5 (1) q = 1900 J (1) (1932 J) 	accept 1930 accept answers to three or more significant figures	4

Q3.

Questi numbe		Answer	Notes	Marks
(a)		to minimise/prevent (mass loss by) evaporation of the (liquid) fuel OWTTE	ALLOW to find mass of fuel used/burned	1
(b)	(i)	soot/carbon	REJECT copper oxide	1
	(ii)	An explanation that links the following two points.		
		M1 incomplete combustion (occurs) M2 (because) the air/oxygen supply is limited OWTTE	ALLOW mark for soot/carbon if not seen in (i), unless copper oxide is mentioned in (i)	
			If copper oxide in (i) ALLOW 1 mark for (because) copper reacts with oxygen (in air)	2

(c) (i)	 substitution into Q = mcΔT calculation of heat energy in Joules conversion to kJ 		
	Example calculation		
	M1 Q = 100 x 4.2 x 30		
	M2 = 12600 (J)	12600 (J) with no working scores M1 and M2 M2 ECF M1	
	M3 = 12.6 kJ	ALLOW approximately = 13 kJ	
		12.6 kJ with no working scores 3	3

(ii)	 calculate the amount, in moles, of methanol divide Q by the amount in moles give the answer with the correct sign 		
	Example calculation		
	M1 0.96 ÷ 32 OR 0.03		
	M2 12.6 ÷ 0.03 OR 420 (kJ/mol)	ACCEPT 13 ÷ 0.03 OR 430/433 for M2	
	M3 – 420 (kJ/mol)	AND – 430 / – 433 for M3	3

Question number	Answer	Notes	Marks
(d) (i)	M1 all points plotted correctly		
	M2 line of best fit drawn with a ruler	does not need to start at (0,0)	2
	-500 -1000 -1500 -2500 -3500 -4000 -4500		
(ii)	M1 straight line extrapolated up to 6 carbon atoms	ALLOW extra point shown at 6 carbon atoms	
	M2 value of ΔH read from their graph	negative sign needed	2
(iii)	The greater the number of carbon atoms (per molecule) the greater (the magnitude/ value of) ΔH	ALLOW ΔH is (directly) proportional to the number of carbon atoms per molecule	
		ALLOW The greater the number of carbon atoms (per molecule) the more exothermic the ΔH value	
			1
			Total 15

Question number	Answer	Notes	Marks
a	An explanation that links together		2
	M1 the reaction is endothermic and either of the following points:	REJECT exothermic for both marks	-
	M2 it takes in thermal energy/heat (from the surroundings)		
	OR		
	M3 as shown by the decrease in temperature (of the reaction mixture)	ALLOW references to cooling	
		No M2 or M3 if the statements contradict each other	

b	 calculation of temperature change substitution into Q = mcΔT evaluation 		3
	Example calculation		
	M1 14.2 – 20.0 = (-)5.8		
	M2 Q = 100 × 4.18 × (–)5.8	100 x 4.18 x (20 – 14.2) scores M1 and M2	
	M3 = (-)2420 (J)	ACCEPT any number of sig figs greater than 2	
		Calculator answer is 2424.4	
		Negative sign not required	
		If answer in kJ unit must be given.	
		Use of 108 can score M1 and M3 (= 2618)	
		2400 alone scores 0	
		ALLOW use of 4.2 for all 3 marks (= 2436)	

			<u> </u>
С	 calculation of moles (n) of ammonium nitrate 		4
	division of Q by n		
	conversion of J to kJ		
	answer given with + sign		
	Example calculation		
	M1 $n[NH_4NO_3] = 8.00 \div 80$ OR 0.1(00) (mol)		
	M2 Q OR 2420 OR answer to b	ACCEPT any number of sig	
	n 0.1(00) answer to M1	figs in the numerator except 1	
		except i	
	M3 $\Delta H = (+)24.2 \text{ (kJ/mol)}$	ACCEPT any number of sig figs except 1	
		пдэ слеере т	
	M4 positive sign included	ALLOW ecf from M2	
		correct answer with no	
		working and no sign or incorrect sign scores 3	
		correct answer with no	
		working and correct sign scores 4	
		working and no sign or incorrect sign scores 3 correct answer with no working and correct sign	

Q5.

Question number	Answer	Notes	Marks
(a)	Explanation including following points	ALLOW southing C. C.	3 grad
	M1 (unsaturated because) contains (carbon to carbon) double bond(s)	ALLOW contains C=C	
	M2 (hydrocarbon because) contains (the elements/atoms) carbon and hydrogen	REJECT molecules	
	M3 only	M3 DEP on carbon and hydrogen	

(b)	(i)	from orange to colourless	ALLOW yellow for orange or any combination of orange/yellow IGNORE clear	1 grad
	(ii)	calculation including following steps M1 calculation of energy involved in bond breaking in reactants M2 calculation of energy involved in bond making in products		4 Exp
		M3 evaluation of difference M4 correct answer and sign	ECF from M1 and M2	
		Example calculation		
		M1 2(612) + 1(348) + 6(412) + 2(193) OR 4430	IGNORE signs in M1 and M2	
		M2 3(348) + 6(412) + 4(276) OR 4620	ACCEPT 2(612) + 2(193) OR 1610 for M1 and 2(348) + 4(276) OR 1800 for M2	
		M3 (4620 - 4430 =) 190	IGNORE sign ACCEPT (1800 - 1610 =) 190	
		M4 -190	M3 M4 ECF from M1 and M2	
			If M1 > M2 answer for M4 must be positive If M1 < M2 answer for M4 must be negative	
			-190 with or without working scores 4 (+) 190 with or without working scores 3	

(c)	(i)	2 C ₄ H ₆ + 7 O ₂ → 2 C + 4 CO + 2 CO ₂ + 6 H ₂ O		1 Exp
	(ii)	Explanation including M1 CO/carbon monoxide	M2 DEP M1 correct or missing	2 Exp
		M2 is poisonous/toxic/reduces capacity of blood to carry oxygen OWTTE	ACCEPT prevents blood from carrying oxygen OWTTE ALLOW correct explanation in terms of haemoglobin eg	
		OR	prevents haemoglobin from carrying oxygen /	
		M1 CO₂/carbon dioxide	forms carboxyhaemoglobin	
		M2 is a greenhouse gas/contributes to global warming/ contributes to climate change OWTTE	, ,	

Question number	Answer	Notes	Marks
(a)	B it relights a glowing splint A is incorrect as this is the test for hydrogen C is incorrect as oxygen is not an acidic gas D is incorrect as this is the test for carbon dioxide		1
(b)	An explanation that links the following two points M1 provides an alternative pathway OWTTE M2 with a lower activation energy OWTTE	ACCEPT more collisions with energy greater than the activation energy ALLOW lowers the energy needed to start the reaction	2

Question number	Answer	Notes	Marks
(c) (i)	 find energy needed to break bonds find energy released when bonds form correct subtraction to find ΔH 		3
	Example calculation		
	M1 (4 x 463) + (2 x 143) OR 2138 (kJ)	ACCEPT (2 x 143)/286 for M1	
	M2 (4 x 463) + 498 OR 2350 (kJ)	and 498 for M2	
		IGNORE any signs in M1 and M2	
	M3 — 212 (kJ) OR M1 – M2 correctly evaluated	— 212 with or without working scores 3	
		(+) 212 with or without working scores 2	

(ii)			2
	Energy $2H_2O_2$ ΔH $2H_2O + O_2$		
	M1 horizontal line to show products in correct position and correctly labelled	Mark CQ on sign in (i)	
	M2 vertical line in correct position and labelled ΔH	ACCEPT double headed arrow or arrow pointing from reactants level to products level	
		REJECT arrow pointing from products level to reactants level	
		IGNORE any attempts at including activation energy	
			Tatal C
			Total 8

Questio number		Answer		Notes	Marks
(a)	(i)	OH-		ALLOW HO ⁻ /OH ⁻¹ /OH ¹⁻	1
				ALLOW lower case letters	
	(ii)	Any value between 0 and 3 inclusive			1
(b)		An explanation that links the following	g two points		2
		M1 polystyrene is an insulator			
		M2 less heat (energy) will be lost		ALLOW no heat (energy) will be lost	
(c)		temperature in °C at end	22.0	ALLOW 22	3
		temperature in °C at start	17.7	If initial and final	
		temperature change in °C	4.3	temperatures are reversed deduct 1 mark	
		1 mark each		ALLOW ECF on temperature change	

(d)	 give the expression for Q substitute correct numbers into Q = mcΔT evaluation in J conversion to kJ 		4
	Example calculation		
	M1 $Q = mc\Delta T$	M2 subsumes M1	
	M2 50 x 4.2 x 5.2	ALLOW ECF for M3 and M4 on incorrect values in M2	
	M3 1092 (J)	ACCEPT answers correctly	
	M4 1.1 (kJ)	rounded to 2 or more sig figs	
		1.1, 1.09, 1.092 without working scores 4	
		1100, 1090, 1092 without working scores 3	
		0.546, 0.55 without working scores 3	
		546, 550 without working scores 2	
		ALLOW use of 4.18 giving an answer of 1.0868	
			Total 11

Question number	Answer	Mark
(a)	 Increment in volume smaller/more precise (1) Avoids refilling the measuring cylinder (1) 	
		2

Question number	Answer		Additional guidance	Mark
(b)	thermometer reading at end/°C thermometer reading at start/°C	(26.8)	1 mark for temperature at start 1 mark for temperature rise	
	temperature rise/°C	8.1	consequential on readings	2

Question number	Answer	Mark
(c)(i)	29.5	1

Question number	Answer	Mark
(c)(ii)	20.8	1

Question number	Answer	Mark
(d)	 Calculation of volume/mass of mixture Calculation of temperature increase 	
	 Substitution of values into q=mcΔT Calculation of heat energy released with unit 	
	Example calculation: $20.0 + 20.0 = 40.0 \text{ (cm}^3\text{) (1)}$ 30.0-18.5 = 11.5 (°C) (1) $q = 40.0 \times 4.2 \times 11.5 \text{ (1)}$ q = 1900 J (1) (accept 1932 J)	
	q = 19003 (1) (accept 19323)	4

Question number	Answer	Mark
(e)	 Setting out of ΔH calculation Division by 1000 to obtain answer in kJ/mol 	
	Example calculation: 1600 ÷ 0.040 (1) = -40 (kJ/mol) (1)	2

Question number	Answer		Notes	Marks
(a) (i)	→ magnesium chloride + hydrogen		ACCEPT in either order	1
(b) (i)	temperature of the acid at the start in °C highest temperature reached in °C temperature rise in °C	22.4 43.2 20.8	ALLOW ECF from incorrect starting temperature	2

(ii)	 substitute correct values into Q = mc∆T evaluation 	Correct answer of 2184 or 2194 without working scores 2	2
	Example calculation		
	M1 Q = 25 x 4.2 x 20.8	ALLOW 25.12g for m	
	M2 2184 (J)	ACCEPT any number of sig figs except 1 ALLOW ECF from M1	
(iii)	find the amount of magnesium in moles divide Q by n convert answer in J/mol to kJ/mol answer including sign		4
	Example calculation		
	M1 $n(Mg) = 0.12 \div 24$ OR $0.005(0)$		
	M2 Q ÷ n OR 2184 ÷ 0.005(0) OR 436,800 (J/mol)	ACCEPT use of 2180 or 2200	
		ALLOW ECF on incorrect answer to (ii) and/or M1	
	M3 436,800 ÷ 1000 OR 436.8 (kJ/mol)	ALLOW ECF on incorrect answer to M2	
	M4 – 436.8 (kJ/mol)	ALLOW ECF on incorrect answer to M3	
		Correct answer with minus sign and without working scores 4	
		Correct answer without minus sign and without working scores 3	
		ACCEPT any number of sig figs except 1 throughout (ii)	
		-438.8 or-438.9 also scores 4 (from 5.12g and 2194J in (ii))	
			Total 9

Question number	Answer	Notes	Marks
(a)	M1 two lithium atoms each lose one electron /give one electron to oxygen M2 oxygen gains two electrons	ALLOW lithium loses one electron /gives one electron to oxygen	з
	M3 lithium (ion) has an electron configuration of 2 and oxide (ion) is 2,8	ALLOW oxygen becomes 2,8	
		All 3 marks can be scored from diagrams showing the electron configurations of the ions	
		0 marks if reference to sharing electrons	

(b) (i)	M1 (temperature after) = 27.7°C		2
	M2 temperature rise = 10.4 °C	ALLOW ecf from M1	
(ii)	Example calculation	Correct answer of 4400J with or without working scores 4	4
	M1 Use of 100 in Q = m x c (x ΔT)		
	M2 Use of 10.4 in Q = (m x) c x ΔT	ALLOW ecf from (b)(i)	
		100 x 4.2 x 10.4 scores M1 and M2	
	M3 4368J	ALLOW ecf from M1 and M2	
	M4 4400J	ALLOW ecf from M3	
(iii)	Example calculation	IGNORE + or - sign in front of answer Correct answer of -89.8 (kJ/mol) scores 3	3
	M1 5210 ÷ 1000 or 5.21	(normon) sources	
	M2 5.21 ÷ 0.0580		
	M3 -89.8(kJ/mol)	ALLOW -90 (kJ/mol) or any number of sig figs as long as correctly rounded.	
(iv)	polystyrene is a good insulator /poor conductor (of heat) OR to minimise/reduce heat loss	ALLOW prevent heat loss	1
			13 marks