| | Name: | | |--------------------|-------|--| | | | | | | | | | 3.1 Energetics | | | | ms | | | | Date: | | | | | | | | | | | | Time: | | | | Total marks availa | ble: | | | Total marks achiev | /ed: | | | Question
number | Answer | Additional guidance | Marks | |--------------------|---|---|-------| | (a) (i) | (bonds broken) 3861 (kJ) | | 1 | | (ii) | (bonds made) 4649 (kJ) | | 1 | | (iii) | M1 subtraction of Σ(bonds made) made and Σ(bonds broken) | In (iii) ECF from (i) and
(ii) must be applied
Subtraction can be in any
order | 3 | | | M2 correct evaluation of the calculation shown in M1
M3 If Σ (bonds made) > Σ (bonds broken) final answer must | IGNORE sign | | | | be negative
If Σ(bonds made) < Σ(bonds broken) final answer must
be positive (and + sign given) | Expected final answer is
-788 (kJ/mol)
-788 with no working
scores 3
(+) 788 scores 2 | | | | | | | | (b) | An explanation that links together the following two points: | | | |-----|--|--|---| | | M1 more energy is given out when the bonds are made | If state/imply that energy
required to make bonds
OR
If state/imply that energy
released when bonds are
broken scores 0/2 | 2 | | | M2 than is taken in when the bonds are broken | ACCEPT correct reverse argument | | | Question
number | Answer | Additional guidance | Marks | |--------------------|---|--|-------| | (c) | ↑ | IGNORE horizontal axis drawn | 3 | | | hydrazine + hydrogen peroxide
energy | IGNORE enthalpy change shown | | | | nitrogen + water | IGNORE activation energy shown | | | | | | | | | M1 right hand line below left hand line | | | | | M2 correct names/formulae of both reactants | If only use words reactants (on left) and | | | | M3 correct names/formulae of both products | products (on right) award
1 mark from M2 and M3 | | | | | | | | | | | | ## Q2. | Question
number | Answer | | Additional guidance | Mark | |--------------------|---|-----------------------|---|------| | (a) | thermometer
reading at end/oC
thermometer
reading at start/oC
temperature rise/oC | (26.8)
18.7
8.1 | 1 mark for temperature at start 1 mark for temperature rise consequential on readings | | | | | | | 2 | | Question
number | Answer | Mark | |--------------------|--------|------| | (b)(i) | 29.5 | 1 | | Question
number | Answer | Mark | |--------------------|--------|------| | (b)(ii) | 20.8 | 1 | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (c) | Calculation of volume/mass of mixture Calculation of temperature increase Substitution of values into q=mcΔT Calculation of heat energy released with unit Example calculation: 20.0 + 20.0 = 40.0 (cm³) (1) 30.0-18.5 = 11.5 (°C) (1) q = 40.0 × 4.2 × 11.5 (1) q = 1900 J (1) (1932 J) | accept 1930
accept answers to three or more
significant figures | 4 | ## Q3. | Questi
numbe | | Answer | Notes | Marks | |-----------------|------|--|--|-------| | (a) | | to minimise/prevent (mass loss by) evaporation of
the (liquid) fuel OWTTE | ALLOW to find mass
of fuel used/burned | 1 | | (b) | (i) | soot/carbon | REJECT copper oxide | 1 | | | (ii) | An explanation that links the following two points. | | | | | | M1 incomplete combustion (occurs) M2 (because) the air/oxygen supply is limited OWTTE | ALLOW mark for
soot/carbon if not
seen in (i), unless
copper oxide is
mentioned in (i) | | | | | | If copper oxide in (i) ALLOW 1 mark for (because) copper reacts with oxygen (in air) | 2 | | (c) (i) | substitution into Q = mcΔT calculation of heat energy in Joules conversion to kJ | | | |---------|--|---|---| | | Example calculation | | | | | M1 Q = 100 x 4.2 x 30 | | | | | M2 = 12600 (J) | 12600 (J) with no
working scores M1 and
M2
M2 ECF M1 | | | | M3 = 12.6 kJ | ALLOW approximately
= 13 kJ | | | | | 12.6 kJ with no
working scores 3 | 3 | | (ii) | calculate the amount, in moles, of methanol divide Q by the amount in moles give the answer with the correct sign | | | |------|---|---------------------------------------|---| | | Example calculation | | | | | M1 0.96 ÷ 32 OR 0.03 | | | | | M2 12.6 ÷ 0.03 OR 420 (kJ/mol) | ACCEPT 13 ÷ 0.03
OR 430/433 for M2 | | | | M3 – 420 (kJ/mol) | AND – 430 / – 433 for
M3 | 3 | | Question number | Answer | Notes | Marks | |-----------------|--|--|----------| | (d) (i) | M1 all points plotted correctly | | | | | M2 line of best fit drawn with a ruler | does not need to start at (0,0) | 2 | | | -500
-1000
-1500
-2500
-3500
-4000
-4500 | | | | (ii) | M1 straight line extrapolated up to 6 carbon atoms | ALLOW extra point
shown at 6 carbon
atoms | | | | M2 value of ΔH read from their graph | negative sign needed | 2 | | (iii) | The greater the number of carbon atoms (per molecule) the greater (the magnitude/ value of) ΔH | ALLOW ΔH is (directly) proportional to the number of carbon atoms per molecule | | | | | ALLOW The greater the number of carbon atoms (per molecule) the more exothermic the ΔH value | | | | | | 1 | | | | | | | | | | | | | | | Total 15 | | Question
number | Answer | Notes | Marks | |--------------------|--|---|-------| | a | An explanation that links together | | 2 | | | M1 the reaction is endothermic and either of the following points: | REJECT exothermic for both marks | - | | | M2 it takes in thermal energy/heat (from the surroundings) | | | | | OR | | | | | M3 as shown by the decrease in temperature (of the reaction mixture) | ALLOW references to cooling | | | | | No M2 or M3 if the statements contradict each other | | | b | calculation of temperature change substitution into Q = mcΔT evaluation | | 3 | |---|---|--|---| | | Example calculation | | | | | M1 14.2 – 20.0 = (-)5.8 | | | | | M2 Q = 100 × 4.18 × (–)5.8 | 100 x 4.18 x (20 – 14.2)
scores M1 and M2 | | | | M3 = (-)2420 (J) | ACCEPT any number of sig figs greater than 2 | | | | | Calculator answer is 2424.4 | | | | | Negative sign not required | | | | | If answer in kJ unit must be given. | | | | | Use of 108 can score M1 and M3 (= 2618) | | | | | 2400 alone scores 0 | | | | | ALLOW use of 4.2 for all 3
marks (= 2436) | | | | | | <u> </u> | |---|--|---|----------| | С | calculation of moles (n) of
ammonium nitrate | | 4 | | | division of Q by n | | | | | conversion of J to kJ | | | | | answer given with + sign | | | | | | | | | | Example calculation | | | | | M1 $n[NH_4NO_3] = 8.00 \div 80$ OR 0.1(00) (mol) | | | | | | | | | | M2 Q OR 2420 OR answer to b | ACCEPT any number of sig | | | | n 0.1(00) answer to M1 | figs in the numerator
except 1 | | | | | except i | | | | | | | | | M3 $\Delta H = (+)24.2 \text{ (kJ/mol)}$ | ACCEPT any number of sig figs except 1 | | | | | пдэ слеере т | | | | M4 positive sign included | ALLOW ecf from M2 | | | | | correct answer with no | | | | | working and no sign or incorrect sign scores 3 | | | | | correct answer with no | | | | | working and correct sign scores 4 | | | | | | | | | | working and no sign or
incorrect sign scores 3
correct answer with no
working and correct sign | | ## Q5. | Question
number | Answer | Notes | Marks | |--------------------|--|----------------------------------|-----------| | (a) | Explanation including following points | ALLOW southing C. C. | 3
grad | | | M1 (unsaturated because) contains (carbon to carbon) double bond(s) | ALLOW contains C=C | | | | M2 (hydrocarbon because) contains (the elements/atoms) carbon and hydrogen | REJECT molecules | | | | M3 only | M3 DEP on carbon and
hydrogen | | | (b) | (i) | from orange to colourless | ALLOW yellow for
orange or any
combination of
orange/yellow
IGNORE clear | 1
grad | |-----|------|--|--|-----------| | | (ii) | calculation including following steps M1 calculation of energy involved in bond breaking in reactants M2 calculation of energy involved in bond making in products | | 4
Exp | | | | M3 evaluation of difference M4 correct answer and sign | ECF from M1 and M2 | | | | | Example calculation | | | | | | M1 2(612) + 1(348) + 6(412) + 2(193) OR 4430 | IGNORE signs in M1 and M2 | | | | | M2 3(348) + 6(412) + 4(276) OR 4620 | ACCEPT
2(612) + 2(193) OR 1610
for M1 and
2(348) + 4(276) OR 1800
for M2 | | | | | M3 (4620 - 4430 =) 190 | IGNORE sign
ACCEPT (1800 - 1610 =)
190 | | | | | M4 -190 | M3 M4 ECF from M1 and
M2 | | | | | | If M1 > M2 answer for
M4 must be positive
If M1 < M2 answer for
M4 must be negative | | | | | | -190 with or without
working scores 4
(+) 190 with or without
working scores 3 | | | (c) | (i) | 2 C ₄ H ₆ + 7 O ₂ → 2 C + 4 CO + 2 CO ₂ + 6 H ₂ O | | 1
Exp | |-----|------|--|--|----------| | | (ii) | Explanation including M1 CO/carbon monoxide | M2 DEP M1 correct or missing | 2
Exp | | | | M2 is poisonous/toxic/reduces capacity of blood to carry oxygen OWTTE | ACCEPT prevents blood
from carrying oxygen
OWTTE
ALLOW correct
explanation in terms of
haemoglobin eg | | | | | OR | prevents haemoglobin
from carrying oxygen / | | | | | M1 CO₂/carbon dioxide | forms
carboxyhaemoglobin | | | | | M2 is a greenhouse gas/contributes to global warming/
contributes to climate change OWTTE | , , | | | Question
number | Answer | Notes | Marks | |--------------------|---|---|-------| | (a) | B it relights a glowing splint A is incorrect as this is the test for hydrogen C is incorrect as oxygen is not an acidic gas D is incorrect as this is the test for carbon dioxide | | 1 | | (b) | An explanation that links the following two points M1 provides an alternative pathway OWTTE M2 with a lower activation energy OWTTE | ACCEPT more collisions with energy greater than the activation energy ALLOW lowers the energy needed to start the reaction | 2 | | Question
number | Answer | Notes | Marks | |--------------------|---|--|-------| | (c) (i) | find energy needed to break bonds find energy released when bonds form correct subtraction to find ΔH | | 3 | | | Example calculation | | | | | M1 (4 x 463) + (2 x 143) OR 2138 (kJ) | ACCEPT (2 x 143)/286
for M1 | | | | M2 (4 x 463) + 498 OR 2350 (kJ) | and 498 for M2 | | | | | IGNORE any signs in M1 and M2 | | | | M3 — 212 (kJ) OR M1 – M2 correctly evaluated | — 212 with or without working scores 3 | | | | | (+) 212 with or without working scores 2 | | | (ii) | | | 2 | |------|--|---|---------| | | Energy $2H_2O_2$ ΔH $2H_2O + O_2$ | | | | | M1 horizontal line to show products in correct position and correctly labelled | Mark CQ on sign in (i) | | | | M2 vertical line in correct position and labelled ΔH | ACCEPT double headed arrow or arrow pointing from reactants level to products level | | | | | REJECT arrow pointing from products level to reactants level | | | | | IGNORE any attempts at including activation energy | | | | | | Tatal C | | | | | Total 8 | | Questio
number | | Answer | | Notes | Marks | |-------------------|------|---|--------------|---|-------| | (a) | (i) | OH- | | ALLOW HO ⁻ /OH ⁻¹ /OH ¹⁻ | 1 | | | | | | ALLOW lower case letters | | | | (ii) | Any value between 0 and 3 inclusive | | | 1 | | (b) | | An explanation that links the following | g two points | | 2 | | | | M1 polystyrene is an insulator | | | | | | | M2 less heat (energy) will be lost | | ALLOW no heat (energy) will be lost | | | (c) | | temperature in °C at end | 22.0 | ALLOW 22 | 3 | | | | temperature in °C at start | 17.7 | If initial and final | | | | | temperature change in °C | 4.3 | temperatures are reversed deduct 1 mark | | | | | 1 mark each | | ALLOW ECF on
temperature change | | | (d) | give the expression for Q substitute correct numbers into Q = mcΔT evaluation in J conversion to kJ | | 4 | |-----|--|---|----------| | | Example calculation | | | | | M1 $Q = mc\Delta T$ | M2 subsumes M1 | | | | M2 50 x 4.2 x 5.2 | ALLOW ECF for M3 and M4 on incorrect values in M2 | | | | M3 1092 (J) | ACCEPT answers correctly | | | | M4 1.1 (kJ) | rounded to 2 or more sig
figs | | | | | 1.1, 1.09, 1.092 without working scores 4 | | | | | 1100, 1090, 1092 without working scores 3 | | | | | 0.546, 0.55 without working scores 3 | | | | | 546, 550 without working scores 2 | | | | | ALLOW use of 4.18 giving an answer of 1.0868 | | | | | | Total 11 | | Question
number | Answer | Mark | |--------------------|---|------| | (a) | Increment in volume smaller/more precise (1) Avoids refilling the measuring cylinder (1) | | | | | 2 | | Question
number | Answer | | Additional guidance | Mark | |--------------------|--|--------|---|------| | (b) | thermometer reading at end/°C thermometer reading at start/°C | (26.8) | 1 mark for temperature at start 1 mark for temperature rise | | | | temperature rise/°C | 8.1 | consequential on readings | 2 | | Question
number | Answer | Mark | |--------------------|--------|------| | (c)(i) | 29.5 | 1 | | Question
number | Answer | Mark | |--------------------|--------|------| | (c)(ii) | 20.8 | 1 | | Question
number | Answer | Mark | |--------------------|--|------| | (d) | Calculation of volume/mass of mixture Calculation of temperature increase | | | | Substitution of values into q=mcΔT Calculation of heat energy released with unit | | | | Example calculation:
$20.0 + 20.0 = 40.0 \text{ (cm}^3\text{) (1)}$
30.0-18.5 = 11.5 (°C) (1)
$q = 40.0 \times 4.2 \times 11.5 \text{ (1)}$
q = 1900 J (1) (accept 1932 J) | | | | q = 19003 (1) (accept 19323) | 4 | | Question
number | Answer | Mark | |--------------------|--|------| | (e) | Setting out of ΔH calculation Division by 1000 to obtain answer in kJ/mol | | | | Example calculation:
1600 ÷ 0.040 (1)
= -40 (kJ/mol) (1) | 2 | | Question number | Answer | | Notes | Marks | |-----------------|---|----------------|---|-------| | (a) (i) | → magnesium chloride + hydrogen | | ACCEPT in either order | 1 | | (b) (i) | temperature of the acid at the start in °C highest temperature reached in °C temperature rise in °C | 22.4 43.2 20.8 | ALLOW ECF from incorrect starting temperature | 2 | | (ii) | substitute correct values into Q = mc∆T evaluation | Correct answer of 2184
or 2194 without working
scores 2 | 2 | |-------|---|--|---------| | | Example calculation | | | | | M1 Q = 25 x 4.2 x 20.8 | ALLOW 25.12g for m | | | | M2 2184 (J) | ACCEPT any number of
sig figs except 1
ALLOW ECF from M1 | | | (iii) | find the amount of magnesium in moles divide Q by n convert answer in J/mol to kJ/mol answer including sign | | 4 | | | Example calculation | | | | | M1 $n(Mg) = 0.12 \div 24$ OR $0.005(0)$ | | | | | M2 Q ÷ n OR 2184 ÷ 0.005(0) OR 436,800 (J/mol) | ACCEPT use of 2180 or 2200 | | | | | ALLOW ECF on incorrect answer to (ii) and/or M1 | | | | M3 436,800 ÷ 1000 OR 436.8 (kJ/mol) | ALLOW ECF on incorrect answer to M2 | | | | M4 – 436.8 (kJ/mol) | ALLOW ECF on incorrect answer to M3 | | | | | Correct answer with minus sign and without working scores 4 | | | | | Correct answer without minus sign and without working scores 3 | | | | | ACCEPT any number of sig figs except 1 throughout (ii) | | | | | -438.8 or-438.9 also
scores 4 (from 5.12g
and 2194J in (ii)) | | | | | | Total 9 | | Question
number | Answer | Notes | Marks | |--------------------|--|--|-------| | (a) | M1 two lithium atoms each lose one electron /give
one electron to oxygen
M2 oxygen gains two electrons | ALLOW lithium loses one
electron /gives one
electron to oxygen | з | | | M3 lithium (ion) has an electron configuration of 2 and oxide (ion) is 2,8 | ALLOW oxygen becomes 2,8 | | | | | All 3 marks can be scored
from diagrams showing
the electron
configurations of the ions | | | | | 0 marks if reference to
sharing electrons | | | (b) (i) | M1 (temperature after) = 27.7°C | | 2 | |---------|--|--|----------| | | M2 temperature rise = 10.4 °C | ALLOW ecf from M1 | | | (ii) | Example calculation | Correct answer of 4400J
with or without working
scores 4 | 4 | | | M1 Use of 100 in Q = m x c (x ΔT) | | | | | M2 Use of 10.4 in Q = (m x) c x ΔT | ALLOW ecf from (b)(i) | | | | | 100 x 4.2 x 10.4 scores M1
and M2 | | | | M3 4368J | ALLOW ecf from M1 and M2 | | | | M4 4400J | ALLOW ecf from M3 | | | (iii) | Example calculation | IGNORE + or - sign in front
of answer
Correct answer of -89.8
(kJ/mol) scores 3 | 3 | | | M1 5210 ÷ 1000 or 5.21 | (normon) sources | | | | M2 5.21 ÷ 0.0580 | | | | | M3 -89.8(kJ/mol) | ALLOW -90 (kJ/mol) or
any number of sig figs as
long as correctly rounded. | | | (iv) | polystyrene is a good insulator /poor conductor (of
heat) OR to minimise/reduce heat loss | ALLOW prevent heat loss | 1 | | | | | | | | | | 13 marks |