Mark scheme

Questio n	Answer/Indicative content	Mark s	Guidance
1	 * Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure is CH₃C₆H₄CH(CH₃)COOH AND Most of the data analysed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) A viable aromatic structure of C₁₀H₁₂O₂ that contains C=O AND most key features consistent with spectral data AND Some of the spectral data analysed There is a line of reasoning presented is relevant and supported by some evidence. Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses most of the IR and NMR data. OR Analyses most of the NMR data. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6(AO 1.2 × 2)(A O 3.1 × 2)(A O 3.2 × 2)	Indicative scientific points: Empirical and Molecular Formulae • C: H: O = $\frac{73.17}{12.0}$: $\frac{7.32}{1.0}$: $\frac{19.51}{16.0}$ = 6.10 : 7.32 : 1.22 = 5 : 6 : 1 • Empirical formula = CsHeO • uses m/z = 164.0 to determine molecular formula as C10H12O2 Structure ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Key features of an aromatic structure consistent with spectral data • COOH group • 4 aromatic H atoms • single H atom that would give a quartet • CH ₃ group that would give a doublet • CH ₃ group that would give a singlet Correct Structure • CH ₃ CsH4CH(CH ₃)COOH ALLOW 2-, 3- OR 4- substitution of ring i.e. $\zeta = \zeta_{13} \zeta = \frac{H_{2} \zeta}{C_{14}} = H$

	 δ = 2.7 ppm, quartet, 1H CO-CH-CH₃ OR Ar-CH-CH₃ / C₆H₅-CH-CH₃ δ = 7.1-7.5 ppm, multiplet, 4H C₆H₄- ALLOW approximate values for chemical shifts. IR: peak at 2300-3700 (cm⁻¹) is O-H peak at -1720 (cm⁻¹) is C=O unknown is a carboxylic acid ALLOW ranges from <i>Data Sheet</i> IGNORE references to C-O peaks Examiner's Comments Candidates are confident in tackling questions requiring spectral analysis. Most candidates were able to determine the empirical and molecular formula of the unknown compound and analyse the IR and NMR data. A number of excellent responses were seen which included interpretation of the peak splitting in the NMR spectrum. However, many candidates were unable to suggest a structure that matched their spectral analysis. The majority of structures seen were aromatic but not all contained the carboxylic acid group. Some candidates focused on the NMR data and suggested a structure that was consistent with some of these peaks and included a two substituents of the ring or a degree of chain branching. Lower ability responses often showed a simpler structure of a monosubstituted ring with a straight chain. Stronger responses were able to use all the data to suggest a correct structure as demonstrated in Exemplar 9. Examiners were impressed with the problem solving ability shown by candidates and a significant proportion of responses were given six marks.

				$\begin{array}{c} \underbrace{\begin{array}{c} C_{1} \ 73 \ 177 \\ P \\$
		Total	6	
2		с	1 (AO 2.5)	Examiner's Comments Many candidates identified that 2-methylpropan-1-ol (C) produced the ¹³ C NMR spectrum show. The majority of successful responses included diagrams showing the structures of the compounds to choose from. The most frequently seen incorrect response was D.
		Total	1	
3		В	1 (AO 2.5)	Examiner's Comments Most candidates correctly selected B as the compound that would show four peaks in the ¹³ C NMR spectrum. Many candidates annotated the structures, indicating the different carbon environments with a circle. This proved a good strategy. Common incorrect responses included C and D which were seen in roughly equal proportions.
		Total	1	

Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.
Level 3 (5–6 marks) Compound is a structure of C ₆ H ₁₂ O ₃ that is consistent with splitting pattern and chemical shifts in NMR spectrum. AND Comprehensive reasoning with most of the data analysed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and
Substantiated. Level 2 (3–4 marks) Compound has a feasible chemical structure that is consistent with the splitting pattern in NMR spectrum but may have incorrect molecular formula. AND Reasoning provided with some of the data
Analysed. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. DR Analyses most of the NMR data. DR Attempts to determine empirical and/or molecular formula AND analyses some of the NMR data. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

4

Examples of structures consistent with splitting and chemical shift in NMR

Note: there may be other possible structures that are consistent with the splitting pattern and chemical shifts in NMR – if an alternative structure is seen, please contact your team leader

Examiner's Comments

Most candidates were able to determine the empirical and molecular formula of the unknown compound. A number of excellent and clear response were seen, where the NMR data was explained, including interpretation of the additional peaks observed without D₂O. However many candidates were unable to suggest a structure that matched their NMR interpretation. Some candidates used the quartet, doublet and singlet to suggest a structure that would give rise to this splitting pattern, but which was not consistent with the chemical shifts, see Exemplar 12. Such responses received a level 2 mark (3-4). Stronger responses were able to use all the data to suggest a correct structure. The most common was CH₃CH(OH)C(CH₃)₂COOH although other viable structures, including CH₃CH(OH)COC(CH₃)₂OH, were also seen. Examiners were impressed with the problem solving ability shown by candidates and a significant proportion of responses were credited six marks.

Exemplar 12

				$\begin{array}{c c} C & H & O \\ SU, SU & 9.10 & 36.36 \\ \hline 12 & 1 & 16 & empirical permillar Scith, O \\ 4.SU & 9.10 & 2.2725 & H'- U, U \\ \hline 2 & U & 132 - 3 \\ \hline 4U \\ \hline Mdecular formula = C_2 H_1O \times 3 = C_6 H_2O_3 \\ \hline peak at 1.2ppm - Kikk H.C - R & H's a \\ doublet so adjacent carbon has 1 & H \\ \hline peak at 1.3ppm = HC-R & Singlet so \\ adjacent C has no protons integral at 5 - Otts \\ adjacent C has no protons integral at 5 - Otts \\ \hline Duarket so adjacent C has 3 protons \\ integral of 1 = CH \\ \hline Additional answer space if required \int_{1}^{O} O \\ D_2 O & at Uppm = -C & Ott and 3.6ppm \\ integral of HC-O & \\ \hline M = CH & M & H \\ \hline H & H & \\ \hline H & H & H \\ \hline H & $
				This logically presented Level 2 response uses the elemental analysis and mass spectrum data to determine the correct empirical and molecular formula of the unknown compound. The peaks in the NMR spectrum are analysed in detail, with a clear explanation of the splitting patterns. A comment about the two additional peaks observed when the spectrum is run without D ₂ O is also provided. The response concludes with a structure of $C_6H_{12}O_3$ that would show a singlet, doublet and quartet in its ¹ H NMR spectrum. However, this structure is not consistent with the chemical shift values shown in the spectrum provided. In particular this structure would produce a quartet between 2.0–2.9 ppm, rather than at 4.0 as in the spectrum shown. Consequentially this response does not achieve Level 3. When tackling questions of this type candidates are advised to check that a proposed structure would produce peaks in the correct region of the NMR spectrum to ensure it is totally consistent with the data analysed.
		Total	6	
5		В	1	ALLOW 4 (This is the number of peaks in the NMR spectrum) Examiner's Comments Many candidates correctly identified that the ¹ H NMR spectrum would contain 4 peaks and selected B. In most cases candidates arrived at this answer by drawing out the structure and labelling the environments. A common distractor was A (3 peaks) which presumably arose from candidates assuming that the C–H and O– H protons in the centre of the structure were equivalent.
		Total	1	

				Examiner's Comments
6		A	1	Candidates found this question more challenging than anticipated. While many correctly chose A, a significant proportion of candidates selected C.
		Total	1	
7	a	Empirical formula Mole Ratio C : H : O = $5.88 : 5.92 : 1.47 \checkmark$ Empirical formula = C ₄ H ₄ O \checkmark Molecular formula Molecular formula = C ₈ H ₈ O ₂ AND Evidence of 136 in working or from labelled peak in spectrum \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES $\frac{70.58}{\text{ALLOW 12.0}} \div \frac{5.92}{1.0} \div \frac{23.50}{16.0}$ ALLOW 4:4:1 if linked to C:H:O Alternative method for 3 marks: $C: \frac{136 \times 70.58/100}{12.0} = 8$ $H: \frac{136 \times 5.92/100}{1.0} = 8$ $O: \frac{136 \times 23.50/100}{16.0} = 2$ Examiner Comments The empirical formula was correctly calculated by all but the weakest candidates. The final mark was more difficult to obtain as it required evidence that the molar mass had been determined from the mass spectrum and used in establishing the molecular formula.
	b	Functional groups Phenol AND ketone √ Explanation Links phenol to (weak) acidity AND no reaction with Na ₂ CO ₃ (so not carboxylic acid) √ Links 2,4-DNP(H) or Brady's reagent observation to carbonyl AND Tollens' reagent observation (so not an aldehyde) √	3	DO NOT ALLOW any other functional groups for first marking point. ALLOW identity of functional groups in the explanation if not stated on functional group prompt line. ALLOW "aldehyde or ketone" in place of carbonyl Examiner Comments Many candidates were able to suggest that the compound contained a ketone but found it more difficult to indicate the presence of phenol. Approximately 20% of the entry obtained all three marks. When explaining the presence of the ketone some failed to indicate that the 2,4-DNP test indicated that the compound must contain a carbonyl and just focused on the lack of reactivity with Tollens'. Answers suggesting the molecule contained a ketone as no reaction was observed with Tollens' did not gain credit when no reference to carbonyl was seen. Those who recognised the presence of a phenol explained that the only acidic functional group that does not react with sodium carbonate is a phenol.
	с	Carbon NMR analysis	3	ALLOW peaks to be identified by:

						OR Ho Ho Ho Examiner's Comments This question required candidates to apply their knowledge of hydrolysis reactions to ester A. The majority of candidates were able to show 3-bromopropanoic acid and ethanol in the top two boxes to secure two marks. The organic products from the alkaline hydrolysis proved more difficult. Many candidates identified ethanol as a product in one of the lower boxes but lower ability responses showed the ethoxide ion. Some candidates drew the 3-bromopropanoate ion as the other product. Higher ability candidates realised that the Br atom would be replaced by an OH group and the best responses showed the correct carboxylate ion. Examiners were encouraged by the number of excellent responses seen and the majority of candidates scored 4 or 5 marks.
	ii i	hydrolysis √			1(AO 1.1)	IGNORE 'acid' and 'alkaline'' IGNORE nucleophilic substitution
b		Proton environment 1 2 3 4 Mark by column Chemical shift: al 3 Splitting pattern: 3	Chemical shift 3.0-4.3 2.0-3.0 3.0-4.3 0.5-1.9 I 4 correct √ all 4 correct √ correct √	Splitting pattern Triplet Quartet Triplet	4(AO 3.1 × 4)	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW integers for δ values e.g. 2 is equivalent to 2.0 ALLOW quadruplet for quartet ALLOW diagrams to show splitting pattern e.g. for triplet for quartet ALLOW splitting patterns shown as numbers i.e. '3' for triplet, '4' for quartet Examiner's Comments This question was answered well and most candidates scored full marks. A common error was the chemical shift of environment 2, which was sometimes shown as 9.0-10.0. Some candidates gave incorrect splitting patterns for environment 2, stating it would give a singlet, rather than a triplet. This is presumably the result of focusing on the carbon atom to the right of the environment with no H atoms. Candidates should be reminded to consider adjacent carbon atoms on both sides of a particular environment rather the

с		$OR \\ OR \\ OR \\ OH \\ OR \\ OR \\ OH \\ OR \\ Hr \\ Hr \\ V$	1(AO 3.1)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner's Comments This question required candidates to use both pieces of information to deduce that B was a carboxylic acid with two equivalent carbon atoms. Many candidates were able to suggest a suitable structure. However some candidates did not use all the information and it was common to see responses that showed an ester or a straight chain carboxylic acid.
d		IF answer on answer line = 24018, AWARD 2 marks IF answer on answer line = 27600, AWARD 1 mark Relative mass of 200 molecules = $200 \times 138 = 27600 \checkmark$ M_r of polyester = $27600 - 199 \times 18 = 24018 \checkmark$	2(AO 2.2 ×2)	ALLOW ECF from incorrect M_r Alternative method based on repeat unit: M_r of 200 repeat units = 200 x 120 = 24000 \checkmark M_r of polymer = 24000 + 1 + 17 = 24018 \checkmark Examiner's Comments A variety of responses was seen in this demanding question. In general candidates adopted one of two approaches. The most common was to multiply the Mr of 2-hydroxybenzoic acid by 200 and then subtract the mass of the 199 water molecules removed during polymerisation. The other approach used the Mr of the repeat unit. This was multiplied by 200 and the mass of H and OH at each end of the polymer was added to give the final answer. Many candidates were successful with the first step of their approach, but the best responses included the second step taking into account the Mr of water. A significant number of candidates used an incorrect value for the Mr in their first step. Candidates are advised to draw out the structure of a compound before determining the Mr. This is particularly important when only a name is given in the question.
e	i	 * Refer to marking instructions on page 4 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Correct calculation of the mass of (CH₃)₂CHCHO. AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations are mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. 	6 (AO 3.3 ×6)	Indicative scientific points may include: <u>Calculation of mass of (CH₃)₂CHCHO</u> Using moles • $n(ester) = \frac{12.75}{102.0}$ = 0.125 (mol) • $n((CH_3)_2CHCHO) = 0.125 \times \frac{100}{40}$ = 0.3125 (mol) • Mass of (CH ₃) ₂ CHCHO = 72.0 × 0.3125 = 22.5 g Using mass • Theoretical mass of ester $= 12.75 \times \frac{100}{40}$ = 31.875 (g)

	_ 31.875
Level 2 (3-4 marks)	• Theoretical $n((CH_3)_2CHCHO) = 102$
Calculation of the mass of (CH3)2CHCHO is	= 0.3125 (mol)
partly correct	 Mass of (CH₃)₂CHCHO = 72.0 × 0.3125 = 22.5 g
AND	
Planned synthesis includes oxidation of	ALLOW small slip/rounding errors such as errors in <i>Mr</i> e.g. use of 74 instead of 72 for (CLL), CLICHO
aldehyde and formation of ester C with some of	
the reagents and conditions identified	Examples of partly correct calculations
OR	$\frac{40}{100}$
Attempts to calculate mass of (CH3)2CHCHO	Mass = 3.60 g from $0.125 \times 100 \times 72$
but makes little progress	(0/ viold invorted)
Planned synthesis includes oxidation of	(% yield invented)
aldehvde and formation of ester C with most of	Mass = $9.00 a \text{from} 0.125 x 72$
the reagents and conditions identified and	
equations for each step are mostly correct	(% yield omitted)
There is a line of reasoning presented with	
some structure. The information presented is	Synthesis: reagents and conditions
relevant and supported by some evidence.	Step 1: Oxidation of aldenyde (CH3)2CHCHO
	■ Reagents: Cr₂Or²-/H ⁺
Level 1 (1-2 marks)	Conditions: reflux
Calculation of the mass of (CH ₃) ₂ CHCHO is	Equation:
partly correct	$(CH_3)_2CHCHO + [O] \rightarrow (CH_3)_2CHCOOH$
OR Diannad averthesis includes both stone with	
some of the reagents and conditions identified	Step 2: Formation of ester C
OR	
Attempts equations for both steps but these	 Reagents: methylpropanoic acid/(CH₃)₂CHCOOH and methanel/CH_OH
may contain errors	Conditions: acid (catalyst) reflux/beat
OR	Equation:
Describes one step of the synthesis with	
reagents, conditions and equation mostly correct	$(CH_3)_2CHCOOH + CH_3OH \rightarrow (CH_3)_2CHCOOCH_3 + H_2O$
	IGNORE attempts to form methanol in synthesis
There is an attempt at a logical structure with a	
line of reasoning. The information is in the most	Examiner's Comments
part relevant.	
0 marks	This question was marked using a level of response mark
No response or no response worthy of credit.	scheme. Most candidates gave a response worthy of at least
	Level 2 (3-4 marks) by either providing the synthetic steps with
	reagents and/or equations for the synthesis of ester C as well as
	below, shows a frequently seen Level 2 response. The best
	performing candidates determined the mass correctly and showed
	the synthesis efficiently, using equations to communicate the
	preparation of ester C and received Level 3 (5-6 marks). Some
	responses focused solely on the 2-methylpropanal and suggested
	it would be both oxidised and reduced with each of the products
	being used to form an ester. Others omitted the mass calculation
	or gave only a partial synthesis. Such responses received Level 1
	(1 ⁻² 111a1x3).

			Exemplar 3 $\begin{array}{c c c c c c c c c c c c c c c c c c c $
			approach in questions like this as it allows them develop and clear line of reasoning without the need to write lots of unnecessary text.
			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
ii	Y (43) = (CH ₃) ₂ CH ⁺ √ Z (71) (CH ₃) ₂ CHCO ⁺ √ If '+' charge is missing/incorrect but the structures of both fragments are correct, award one mark	2(AO 2.7 × 2)	For Y and Z, ALLOW structure of a feasible fragment ion formed from ester C $H_{3}C - C - C - C - C - C - C - C - C - C -$
			e.g. Y (43) = CH ₃ OC ⁺ Z (71) = ⁺ CCOOCH ₃
			ALLOW 1 mark if both correct ions are shown but in the incorrect

			columns
			ALLOW 1 mark for both correct ions if one or both have an 'end bond'
			ALLOW 1 mark if both ions are shown using correct molecular formulae
			Examiner's Comments
			Most candidates were able to provide a correct structure for each of the ions responsible for the peaks labelled Y and Z . Some candidates omitted the charge, or included 'end bonds'. These responses were able to achieve one mark if both fragments were correct. So the majority of candidates scored one or two marks in this part.
	Total	22	
9	с	1	ALLOW 3 (This is the number of peaks in the NMR spectrum) Examiner Comments This was well answered on the whole, with some candidates failing to include the peak associated with the -COOH part of the molecule. The common incorrect answer was D.
	Total	1	
1 0	 Please refer to marking instructions on page 4 of mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive analysis of the information available with through explanations linked to the evidence. Acid C identified as a tricarboxylic acid with a tertiary –OH group and the correct molecular formula of C₆H₈O₇. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated Level 2 (3–4 marks) Analysis of the information available but explanations may be incomplete or there may be mistakes in calculations, although the method may be sound. There is a line of reasoning presented with some structure. The information presented by some evidence. Level 1 (1–2 marks) 	6	 Indicative scientific points may include Identification of functional groups Tribasic acid → three -COOH groups From 1 mol C requires 3 mol NaOH Tertiary alcohol From no colour change with hot acidified dichromate(VI) Determination of molecular formula of C M(C) = 1.21×10⁻² = 192 (g mol⁻¹) From 1.21 × 10⁻² mol C has a mass of 2.323 g. 192 - 3 × 45 (3 × COOH) - 16 (O) = 41 41 → C₃H₅(or evidence of working) Molecular formula = C₆H₈O7 Structure of citric acid 4 peaks in ¹³C NMR → 4 types of carbon Correct structure of C matching evidence.

	 A simple analysis of the information available and limited explanations which may or may not be explicitly linked to the evidence. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks – No response worthy of credit. 		NOTE : Structure below match all evidence except for ¹³ C NMR. See Level 3 criteria. $HO - C - CH_2 - COOH HOOC - C - CH - COOH HOOC - C - CH - COOH HOOC - C - CH - COOH OH CH_3$
	Total	6	
1 1	 *Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure of J identified as CH₃CH₂C(CH₃)₂CN AND/OR A comprehensive analysis with most of the spectral data analysed and few omissions. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Analysis may be incomplete and structure of J identified. OR Thorough analysis of one aspect of the information given in question and structure of J may be incorrectly identified. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) An attempt at a simple analysis. OR Explains one scientific point thoroughly with a few omissions. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 	6	LOOK ON THE SPECTRA for labelled peaks. Indicative scientific points may include: Empirical and Molecular Formula of J C:H:N = 74,17/12 : 11,41/1 : 14,42/14 6.18 : 11,41 : 10.3 $\circ 6 : 11 : 1$ $\circ 1 : 11 : 11 : 11 : 11 : 11 : 11 : 11 $

			0 marks No response or no response worthy of credit.		$CH_3 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_3$ CH_3
					formula as long as unambiguous
			Total	6	
1	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling √ Equation Correctly balanced equation √	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc.
			e.g. 2RCOOH + Na ₂ CO ₃ \rightarrow 2RCOONa + CO ₂ + H ₂ O		ALLOW reagent from equation if not stated elsewhere
		ii	Reagent and observation Tollens' (reagent) AND Silver (mirror) √ Equation RCHO + [O] → RCOOH √	2	Note: both reagent and observation are required for first mark ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW H ⁺ /Cr ₂ O7 ²⁻ OR acidified (potassium/sodium) dichromate AND Orange to green (<i>this would identify the aldehyde from the</i> <i>carboxylic acid, ketone and esters</i>)
	b		2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
	c	i	CH ₃ COOC(CH ₃) ₃ + NaOH \rightarrow CH ₃ COONa + (CH ₃) ₃ COH CH ₃ COONa \checkmark Rest of equation correct \checkmark OR (CH ₃) ₃ CCOOCH ₃ + NaOH \rightarrow (CH ₃) ₃ CCOONa + CH ₃ OH	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products <i>(question requires structures of products to be shown)</i>

		(CH ₃) ₃ CCOONa	√		
$\left \right $					
		Reagent and ot	oservation		
		H ⁺ /Cr ₂ O ₇ ²⁻ OR ad dichromate AND Orange to green	cidified (potassium/sodium) ((with CH₃OH) √	2	
		Equation		2	
		$CH_3OH + [O] \rightarrow OR$	HCHO + H ₂ O		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		CH ₃ OH + 2[O] -	→ HCOOH + H2O √		DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
		¹³ C NMR (1	mark)		
		(It is) not possibl ¹³ C NMR AND (both) spectra w similar chemical	le to identify (the esters) with ould contain four peaks (with shifts) √		
		¹ H NMR (2 1	marks)		
		(It is) possible to NMR	identify (the esters) with ¹ H		ALLOW 'same number of peaks' in place of 'four peaks'
	i			3	
		(¹ H NMR spectru singlet/peak betv	um of) CH₃COOC(CH₃)₃ has a ween 2.0−3.0 (ppm)		
					ALLOW any value or range of values within 2.0-3.0
		(¹ H NMR spectru singlet/peak betv	um of) (CH₃)₃CCOOCH₃ has a ween 3.0−4.3 (ppm)		
					ALLOW any value or range of values within 3.0-4.3
		All three correct Any two correct	statements√√ statements √		
		Possible struct	ures for ketone (2 marks)		ALLOW any combination of skeletal OP structural OP displayed
	d	Сн ₃ —с—сн ₂	₂ CH ₂ CH ₃	5	formula as long as unambiguous
		О СН ₃ СН ₂ С	CH ₂ CH ₃		IGNORE names of ketones

		$CH_{3} - C - CH - CH_{3}$ $CH_{3} - C - CH - CH_{3}$ $H = CH_{3}$ $CH_{3} - C - CH - CH_{3}$ $H = CH_{3}$		
		AND No H on adjacent C atom as peak is singlet \checkmark $H_3C \longrightarrow C \longrightarrow C \longrightarrow H$ $H_3C \longrightarrow C \longrightarrow H$ CH_3 OR (2,2-)dimethylpropanal \checkmark		
		Total	17	
1 3		С	1	
		Total	1	
1 4	а	$\frac{\text{Reducing agent}}{\text{NaBH₄ / sodium tetrahydridoborate(III) / sodium borohydride√}$ $\frac{\text{Equation}}{\text{CH}_3(\text{CH}_2)3\text{CHO} + 2[\text{H}] \rightarrow \text{CH}_3(\text{CH}_2)3\text{CH}_2\text{OH }√$	1	ALLOW LiAlH ₄ /lithium tetrahydridoaluminate(III)/lithium aluminium hydride ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW C ₄ H ₉ CHO + 2[H] \rightarrow C ₅ H ₁₁ OH ALLOW molecular formulae: C ₅ H ₁₀ O + 2[H] \rightarrow C ₅ H ₁₂ O DO NOT ALLOW –COH for aldehyde Examiner's Comments Very well answered. The most common error was an incorrect formula for the aldehyde.
	b		7	ANNOTATE WITH TICKS AND CROSSES ETC

				ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous IGNORE names if structures are given
		M1 Compound F structure is a secondary alcohol with the formula $C_5H_{11}OH \checkmark$ M2 Compound F = CH ₃ CH(OH)CH(CH ₃)CH ₃ \checkmark		ALLOW 3-methylbutan-2-ol if structure not given ALLOW ECF from an incorrect secondary alcohol for M3 e.g. pentan-2-ol \rightarrow pentan-2-one e.g. pentan-3-ol \rightarrow pentan-3-one ALLOW (3-)methylbutanone if structure not given IGNORE any discussion of the reactions of compound G with 2,4- dinitrophenylhydrazine and/or Tollens' reagent.
		M3 Compound G = CH₃COCH(CH₃)CH₃ √		 ALLOW 3 SF up to calculator value correctly rounded IF M(compound H) = 74 award 2 marks (M4 + M5) ALLOW ECF from incorrect calculation of amount of NaOH ALLOW propanoic acid if structure not given ALLOW ECF from incorrect compound F (alcohol) and/or incorrect compound H (carboxylic acid) to form compound I (ester).
		$ \begin{array}{l} \text{Mith}(\text{rder}) = (0.126 \times 22.6) \text{ rece} = 0.00266 \\ (\text{mol}) \checkmark \\ \text{M5} \\ \text{M(compound H)} = (0.211/0.00285 =) 74(.0) (\text{g mol}^{-1}) \checkmark \\ \text{M6 Compound H} = / \text{CH}_3 \text{CH}_2 \text{COOH} \checkmark \\ \text{M7} \\ \text{Compound I} = \\ H - \begin{array}{c} H \\ H $		Compounds F, G, H and I must be placed in the correct box or correctly labelled for M2. M3, M6 and M7 Examiner's Comments A high scoring question with many candidates gaining full marks. Although most realised that Compound F was a secondary alcohol, fewer candidates combined this knowledge with the information provided by carbon-13 NMR to deduce the correct structure of the secondary alcohol.
с		The structural isomer is:	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

			CH ₃		ALLOW 2,2-dimethylpropan-1-ol
	H_3C — C — CH_2 — OH			Examiner's Comments	
			$ m CH_3$		A good discriminator but many correct structures were seen.
			√		
			Total	10	
1 5	a i $\frac{{}^{1}$ H NMR spectrum for 2-aminopropan-1-ol Chemical shift, Relative peak Splitting δ/ppm area pattern 0.8 - 2.0 3 doublet 2.3 - 3.0 1 multiplet 3.3 - 4.2 2 doublet $\sqrt{\sqrt{4}}$		3	One mark for each correct row ALLOW δ values as a range or a value within the specified range. ALLOW δ values +/- 0.2 ppm. ALLOW a response that implies a splitting into two for a doublet etc. ALLOW sextet/hextet/six (or more than 5) as alternative to multiplet Relative peak area = CH /3H etc. penalise once Examiner's Comments Although it could be argued that this question tested the same skill three times, the full range of marks was awarded and errors were seen in the chemical shift, relative peak area and splitting pattern. Fully correct responses included either a chemical shift value within the range specified on the data sheet or a range that matched the one given on the data sheet.	
		ï	<u>M⁺ peak at 75</u> (peak 1) CH ₃ CH(NH ₂)CH ₂ OH ⁺ /C ₃ H ₉ NO ⁺ √ <u>Fragment peak at 44</u> (peak 2) CH ₃ CH(NH ₂) ⁺ /C ₂ H ₆ N ⁺ √	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Positive charge is essential but ALLOW maximum of one mark if both formulae are correct AND neither species has a positive charge Examiner's Comments Although peak 2 was often correct, the species responsible for the M+ peak was often missing a positive charge. Possibly students have learned that the particles become charged as part of the fragmentation process and don't realise that only charged particles can be detected by a mass spectrometer.
	b	i	Ethanolic ammonia OR ammonia/NH₃ AND ethanol √	1	ALLOW ammonia in a sealed tube ALLOW dilute ethanolic ammonia/NH ₃ IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions Examiner's Comments

					A well answered question. Some candidates forgot to use a solvent or suggested the use of aqueous ammonia.
		ï	(compound D) $H_{C} CH_{3}$ $H_{C} CH_{2}OH$ $H_{3}C CH_{2}OH$ $H_{3}C CH_{2}OH$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments This question discriminated well. Although there were very few blank pages, many incorrect structures were seen.
	С	i	Alcohol AND Amide/peptide √	1	IGNORE phenol IGNORE hydroxyl/hydroxy IGNORE attempts to classify alcohol or amide as primary, secondary or tertiary DO NOT ALLOW hydroxide Examiner's Comments Generally well answered but incorrect functional groups included carbonyl and amine.
		ï	$\begin{array}{c} O \\ NH_{3^{*}} \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + on N or H i.e. ⁺ NH ₃ or NH ₃ ⁺ ALLOW NH ₃ ⁺ Cl ⁻ Examiner's Comments Many candidates were able to score one mark for this question but the amine group was often not protonated and it was surprisingly common to see the amine group as NH ₂ ⁺ .
			Total	10	
1 6	а		√	1	
	b	i	$2Na + 2CH_{3}OH \rightarrow 2Na^{+} + 2CH_{3}O^{-} + H_{2}\checkmark$	1	ALLOW 2Na + 2CH ₃ OH \rightarrow 2CH ₃ ONa + H ₂

			$ \begin{array}{c} & & & \\ & & & \\ $		ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous.
					The curly arrow must start from O atom of CH ₃ O [−] AND must start either from a lone pair or from the negative charge.
		ii	Curly arrow from CH ₃ O [−] to carbon atom of C-Br bond \checkmark	3	No need to show lone pair if curly arrow comes from negative charge.
			Dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$ AND curly arrow from C–Br bond to the Br atom \checkmark Products of reaction (must not be ambiguous) \checkmark		ALLOW S _N 1 Dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$, and curly arrow from C–Br bond to the Br atom. Correct carbocation drawn. AND curly arrow from CH ₃ O ⁻ to carbocation.
					The curly arrow must start from the oxygen atom of the CH_3O^- , and must start either from a lone pair or from the negative charge.
		ii i	CH₃O⁻ donates an electron pair AND heterolytic fission ✓	1	ASSUME 'it' refers to CH₃O⁻
	С		Chemical shift, δ/ppm Relative peak areaSplitting pattern $0.5-1.9$ 3Triplet \checkmark $3.0-4.3$ 2Quartet \checkmark $0.5-1.9$ 6Doublet \checkmark $3.0-4.3$ 1Heptet(4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range
			3.0−4.3 1 Heptet ✓		ALLOW multiplet for heptet
	d	i	H ₃ C C C C C H ₃ H_3 C C C C C H ₃ H_3 C C C C C H ₃ H_3 C C C C C H ₃ Curly arrow from CH ₃ O ⁻ to H of CH ₂ \checkmark Curly arrow from C-H bond to C of CH ₂ \checkmark H_3 C C C C C H ₃	3	The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge.
			C C C C C C C C C C C C C C C C C C C		ALLOW any unambiguous structure, skeletal, displayed, structural or combination.
		ii	CH ₃ O ⁻ accepted a proton \checkmark	1	ASSUME 'it' refers to CH ₃ O [−]
			Total	14	
1 7			Electrophilic substitution means benzene ring	5	

		Electrophilic addition means alkene / C=C						
		Isomer of $C_9H_8O_2$ containing C=C, benzene ring AND COOH Correct isomer: \overrightarrow{OOCH} \overrightarrow{OR} \overrightarrow{OOCH} justification in terms of number of carbon environments		Concluded using data provided and conclusions from 1st two marks. ALLOW 1 mark for: OR (does not gain final justification mark)				
		Total	5					
		Elemental analysis and molecular formula		ANNOTATE ANSWER WITH TICKS AND CROSSES				
		Use of percentages to give empirical formula $C_5H_{10}O_2$						
		Evidence of using empirical formula AND 102 to		C:H:O = 58.80/12 : 9.87/1 : 31.33/16				
		give molecular formula = C₅H10O2		<u>4.90</u> : 9.87 : 1.96 2.5 : 5.04 : 1				
			8	5 : 10 : 2				
1		IR Spectrum Peak at ~1750 OR 1630–1820 (cm ⁻¹) AND C=O NMR analysis		Alternative method: carbon: $(102 \times 58.80 / 100)/12 = 5$ hydrogen: $(102 \times 9.87 / 100)/1 = 10$ oxygen: $(102 \times 31.33 / 100)/16 = 2$				
		Peak(s) at (δ) 4.9 shows HC–O AND 1 H in environment (peak area) OR 6H on adjacent C as peak is multiplet / heptet / septet		ALLOW C=O peak labelled on spectrum				
		Peak at (δ) 2.2 shows HC–C=O AND 3 H in environment (peak area) OR No H on adjacent C as peak is singlet Peak(s) at (δ) 1.3 shows HC–R AND 6 H (or 2 × CH ₃) in environment (peak area) OR 1H on adjacent C as peak is doublet		 NOTE each peak can be identified from: its δ value a range e.g. 'the peak between 1.3-1.4' its relative peak area its splitting labelling on spectrum 				
		Structure Correct structure:		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous				

			DO NOT ALLOW ECF from incorrect molecular formula
	Allow one mark for		
	Total	8	
1 9	В	1	
	Total	1	
2 0	 * Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5–6 marks) Structure correct AND Analysed all ¹H NMR signals with at least two supporting statements made. The analysis is clear and logically structured. The supporting statements are relevant to the correct structure drawn. Level 2 (3–4 marks) Structure has correct molecular formula AND C=O AND OH but in incorrect positions AND Analysed at least three ¹H NMR signals with one or two supporting statements are in the most-part relevant to the structure drawn. Level 1 (1–2 marks) Structure has correct molecular formula AND C=O ROH but in incorrect positions. AND Analysed at least two ¹H NMR signals with no or one supporting statements made. The analysis is presented with some structure. The analysis is presented relevant. Level 1 (1–2 marks) Structure has correct molecular formula AND C=O OR OH but in incorrect positions. AND Analysed at least two ¹H NMR signals with no or one supporting statements made. The analysis is basic and communicated in an unstructured way. The relationship of the supporting evidence to the structure may not be clear. 	6	Indicative scientific points may be included: Structure $\downarrow \downarrow $

			0 marks No response or no response worthy of credit.		
			Total	6	
2 1			A	1	
			Total	1	
2 2	а		14 🗸	1	Examiner's Comments Almost all candidates scored this mark for counting the peaks in the ¹³ C NMR spectrum.
			NMR analysis (5 marks)		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			M1 Peaks between (δ) 7.1 and 7.5 (ppm) OR Relative peak area of 7 OR		IGNORE analysis of ^{13}C spectrum Each peak can be identified from its δ value ± 0.2 ppm
			Multiplet = H		ALLOW (seven) benzene ring protons OR aromatic protons DO NOT ALLOW benzene ring without reference to protons ALLOW C ₆ H ₆ IGNORE
Ł	b		M2 Peak at 5.2/5.3 OR Relative peak area of 1 = N−H ✓	7	IGNORE O-H , CONH AND C=CH
			M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = CH OR $C_6H_5CH_{2\sqrt{2}}$ M4 Peak at 0.7/0.8		ALLOW quadruplet IGNORE CHC=O AND HC-N
					DO NOT ALLOW triplet = CH ₃ OR CH ₂ CH ₃
			OR Triplet		This also scores $M4$ if triplet is linked to R–CH ₃
			= R–CH OR R–CH ₃		ALLOW CH_3CH_2 described as $R-CH_3$ and 2 adjacent H

М5

Triplet (at δ 0.7) **AND** quartet (at δ 2.3) = CH₂CH₃ **OR** triplet at (δ) 0.7 shows (C with) 2 adjacent Hs / protons = CH₂CH₃ **OR** quartet (at δ 2.3) shows (C with) 3 adjacent Hs / protons = CH₂CH₃ \checkmark OR ----CH2-- and 3 adjacent H

The information can be presented on the spectrum or in a table.

Chemical shift/ppm	Relative peak area	Splitting pattern	Type of pro
7.1 – 7.5	7	Multiplet	$\langle \bigcirc$
5.3	1	Singlet	N-H
2.3/2.4	2	Quartet	Ô
1.7/1.8	3	Singlet	HC-C=N
0.7/0.8	3	triplet	R-CH/R-C

IGNORE peak in the range 1.6-2.2 = HC-C=N- because this information is given in the question.

H₃C-C=N- scores one mark for the identification of R^1 or R^2 (see below)

ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Marks are for structure of R^1 and R^2

IGNORE errors in the rest of the structure

ALLOW 1 mark for CH₃ and CH₃CH₂ swapped, i.e. the following structure

ALLOW H₃C-C=N-

Identification of R¹ and R² (2 marks) Orange precipitate L Correct structure scores 2 marks H_{3G} H_{3G} H_{3G} H_{3G} H_{3G}

QWC: triplet or quartet spelled correctly in

the correct context for M5

 R^1 or $R^2 = -CH_3$ \checkmark

	$R_1 \text{ or } R_2 = \qquad $		MUST BE 1,4-disubstituted (14 carbon environments in the ¹³ C NMR spectrum Examiner's Comments Although the use of 2,4-dinitrophenylhydrazine to detect the presence of a carbonyl group in an organic compound and to identify a carbonyl compound from the melting point of the derivative is required in the specification, the equation for this reaction and the structure of the derivative was not required in the question. The equation for the reaction and the structure of the derivative, with R ¹ and R ² groups from the original carbonyl compound, was given in the question. The structure of carbonyl K was similar in complexity to structures featured in previous papers. The mark scheme was constructed so that at least two of the first five marks awarded for the analysis were easily accessible by comparing the chemical shifts in the ¹ H NMR spectrum with those displayed in the data sheet. These marks were often achieved by the construction of a clearly labelled and well organised table or by annotating the spectrum. Splitting patterns were well understood but one problem for candidates was the difficulty in associating the peak at $\delta = 2.3/2.4$ ppm with a benzylic hydrogen; many candidates focused more on coupling than on chemical shifts and missed a chance to solve the structure. Of the two marks available for identifying R ¹ and R ² , one could be derived quickly by linking information given in the question with one of the peaks in the ¹ H NMR spectrum. The second identification mark required careful analysis of both the ¹ H NMR and ¹³ C NMR data. Overall, most candidates were able to score marks on this question and completely correct answers were achieved by the most able candidates
с	Carbonyl compound K	1	ALLOW ECF from incorrect compound L Must be a correct carbonyl structure Examiner's Comments It was not possible to score a mark for this question unless a structure had been drawn for compound L. However, many candidates were able to score this mark as error carried forward from structures that had failed to gain any credit in the previous
d i	✓ Radio (waves) ✓	1	question were allowable. ALLOW a value in the range 60 – 900 MHz Examiner's Comments The interaction of materials with the low-energy radio wave region of the electromagnetic spectrum is described in the specification but this question was surprisingly poorly answered. Infrared, ultraviolet, X-rays and gamma rays were all commonly seen

					answers in addition to ranges of chemical shift quoted from the data sheet.
			The solvent does not have any hydrogen / H / protons ✓	1	ALLOW to prevent (¹ H nuclei from) the solvent from interfering with the NMR spectrum
					ALLOW does not show on the spectrum
					ALLOW no peak / signal (from solvent)
		ii			IGNORE volatility
					Examiner's Comments
					The need for deuterated solvents was well known but some candidates confused the use of this solvent with the use of TMS as the standard for chemical shift measurements or the identification of O—H and N—H protons by proton exchange using D2O.
			Total	11	
			NMR analysis = 5 marks		NOTE: Each peak can be identified from:
					 its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets) labelling on the spectrum
			M1: Peak(s) at (δ) 9.7 = CHO √		ALLOW CH ₂ CHO / aldehyde
	а				ALLOW (four) benzene ring proton(s) IGNORE reference to phenol
23			M2: Peak(s) at (δ) 7.1 = C ₆ H₄	9	
			M3: Triplet at (δ) 1.3 / peak at 1.3 AND quartet (at δ 2.6) / peak at 2.6 = CH ₂ CH ₃ \checkmark		M3 and M4 Look for a clear link (using words or diagrams) between the two peaks
			M4: Triplet at (δ) 9.7 / peak at 9.7 AND doublet (at δ 3.7) / peak at 3.7 = CH ₂ CHO ✓		
			M5: (n+1 rule) Any one of the following		

© OCR 2022. You may photocopy this page.

 triplet at (δ) 1.3 shows (C with) 2 adjacent Hs / protons OR adjacent CH₂ (because of splitting: so triplet) 	ALLOW a response that implies a splitting into three for a triplet / into two for a doublet etc. ALLOW "neighbouring" Hs for "adjacent to" Hs
 quartet at (δ 2.6 shows) (C with) 3 adjacent Hs / protons OR adjacent CH₃ 	IGNORE other comments about splitting once M5 has been awarded
 triplet at (δ) 9.7 shows (C with) 2 adjacent Hs / protons OR adjacent CH₂ 	
 doublet at (δ 3.7 shows) (C with) 1 adjacent H / proton OR adjacent CH 	DO NOT ALLOW one of M3 or M4 or M5 if triplet not seen
✓ <i>✓</i> QWC: triplet spelled correctly in the correct context once	
	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
	IF structure contains $C_6H_4 \checkmark$
	IF structure contains C_6H_4 AND the organic structure contains CH_3CH_2 directly attached to the benzene ring OR contains CH_2CHO directly attached to the benzene ring $\sqrt{4}$
Aldehyde structure = 4 marks CH_3CH_2 CH_3CH_2 C	IF structure has formula $C_{10}H_{12}O$ AND structure contains C_6H_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,2 OR 1,3 substituted $\sqrt{\sqrt{3}}$
	IF structure has formula $C_{10}H_{12}O$ AND structure contains C_6H_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,4 substituted $\sqrt{\sqrt{\sqrt{4}}}$ (use of ¹³ C data)
	Examiner's Comments

								Good discrimination was achieved in this question. Nearly all could score at least one mark from the first two marking points by identifying the peak associated with the proton in the aldehyde group, or the peak given by benzene ring protons. Many gave a good explanation of a splitting pattern to score the fifth marking point. These marks were often achieved by the construction of a clearly labelled and well organised table. Many were able to suggest a structure for compound H . The best candidates included a 1,4 substituted benzene ring after correctly interpreting the information from the carbon-13 NMR spectrum. Candidates should avoid drawing several different structures and not indicating which one they wish to have marked.
	b		TMS / tetramethylsilane (which is the) standard (for chemical shift measurements)					 ALLOW (CH₃)₄Si ALLOW TMS is the reference OR TMS has δ = 0 (ppm) OR for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak Examiner's Comments This was well answered by the majority of candidates.
			Total					
			¹ H NMR spectrum for serine					ALLOW δ values ± 0.2 ppm, as a range or a value within the range
			chemical shift, δ /ppm	rela peak	tive area	splitting patt	2	ALLOW a response that implies a splitting into three for a triplet /
2			2.0 to 3.0	1	1	triplet		into two for a doublet
4			3.3 to 4.2	2	2	doublet		Examiner's Comments
			One mark for each correct row √√					Many candidates did not have the skills required to score marks on this question. Errors were made in all three columns and most often in assigning appropriate shift values from the data sheet.
			Total					
2			Compound C D E			E		
			Number of	5	5	4		Examiner's Comments
5			all correct √				1	The interpretation of carbon-13 NMR spectra seems to be very well understood and the vast majority of candidates were able to correctly predict the number of peaks for all three compounds.
			Total					