

## Electrode potential – key ideas

| • | Reducing agent = e <sup>-</sup> donor (e <sup>-</sup> provider) Oxidising agent = e <sup>-</sup> acceptor                                                                                       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Two oxidising agents cannot react with each other, an oxidising agent (e-acceptor) can only react with a reducing agent (e-donor)                                                               |
| • | A half-cell comprises an element in two oxidation states, e.g. Cu(s) and Cu <sup>2+</sup> (aq), Fe <sup>2+</sup> (aq) and Fe <sup>3+</sup> (aq),                                                |
| • | A reaction can only happen if the $E^\circ$ of the cell is positive. The half-cell with the most positive $E^\circ$ undergoes reduction and the one with the least positive $E^\circ$ oxidation |



Look at the following half equations, also called redox systems:

| Redox<br>system |                                    |                      |                                    | E <sup>⊕</sup> /V |
|-----------------|------------------------------------|----------------------|------------------------------------|-------------------|
| 1               | $Mg^{2+}(aq) + 2e^{-}$             | $\rightleftharpoons$ | Mg(s)                              | -2.37             |
| 2               | $Cu^{2+}(aq) + 2e^{-}$             |                      | Cu(s)                              | +0.34             |
| 3               | $Al^{3+}(aq) + 3e^{-}$             | $\rightleftharpoons$ | Al(s)                              | -1.66             |
| 4               | $Fe^{3+}(aq) + e^{-}$              | $\rightleftharpoons$ | Fe <sup>2+</sup> (aq)              | +0.77             |
| 5               | $I_{2}(aq) + 2e^{-}$               | $\rightleftharpoons$ | 2I-(aq)                            | +0.54             |
| 6               | $Cl_2(g) + 2e^{-}$                 | $\rightleftharpoons$ | 2C1-(aq)                           | +1.36             |
| 7               | $ClO^{-}(aq) + 2H^{+}(aq) + e^{-}$ | $\rightleftharpoons$ | $\frac{1}{2}Cl_{2}(g) + H_{2}O(l)$ | +1.63             |

The **oxidising agents** (e- acceptors) are all on the **left-hand side** of the equations. i.e.: Mg<sup>2+</sup>, Cu<sup>2+</sup>, Al<sup>3+</sup>, Fe<sup>3+</sup>, I<sub>2</sub>, Cl<sub>2</sub>, ClO<sup>-</sup>. The **reducing agents** are on the **right-hand side** of the equations: Mg, Cu, Al, Fe<sup>2+</sup>, I<sup>-</sup>, Cl<sup>-</sup> and Cl<sub>2</sub>. Remember that **an oxidising agent can only react with a reducing agent**.

Notice than Cl<sub>2</sub> can behave as an oxidising agent (system 6) and as a reducing agent (system 7), if as an oxidising agent then it becomes Cl<sup>-</sup> (system 6), if as a reducing agent then it becomes ClO<sup>-</sup> (system 7)

**Q)** An electrochemical cell is made of systems 1 and 2. Predict the reaction that would take place.  $E^{\circ}$  (Cu<sup>2+</sup>/Cu) >  $E^{\circ}$  (Mg<sup>2+</sup>/Mg) therefore the Cu half cell undergoes reduction and the Mg one oxidation, the reaction that would happen is Cu<sup>2+</sup> + Mg  $\rightarrow$  Mg<sup>2+</sup> + Cu

- 1. If you mix system 1 and 3, would a reaction take place? If so, write it down
- 2. If you mix Mg<sup>2+</sup> (not the Mg-half cell which would contain Mg as well) with Al<sup>3+</sup>, would a reaction take place? Justify your answer
- 3. If you mix Mg<sup>2+</sup> with Al, would a reaction take place? Justify your answer
- 4. If you mix Mg with Al3+, would a reaction take place? Justify your answer



Standard electrode potentials for eight redox systems are shown in Table 6.1.

You will need to use this information throughout this question.

| redox<br>system | half-equation                           |                      |                           |       |
|-----------------|-----------------------------------------|----------------------|---------------------------|-------|
| 1               | 2H+(aq) + 2e-                           | $\rightleftharpoons$ | H <sub>2</sub> (g)        | 0.00  |
| 2               | Fe <sup>3+</sup> (aq) + e <sup>-</sup>  | $\rightleftharpoons$ | Fe <sup>2+</sup> (aq)     | +0.77 |
| 3               | $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$   | $\Longrightarrow$    | $2Cr^{3+}(aq) + 7H_2O(I)$ | +1.33 |
| 4               | $O_2(g) + 4H^+(aq) + 4e^-$              | $\rightleftharpoons$ | 2H <sub>2</sub> O(I)      | +1.23 |
| 5               | Cu <sup>2+</sup> (aq) + 2e <sup>-</sup> | $\Longrightarrow$    | Cu(s)                     | +0.34 |
| 6               | $CO_2(g) + 2H^+(aq) + 2e^-$             | $\Longrightarrow$    | HCOOH(aq)                 | -0.22 |
| 7               | HCOOH(aq) + 2H+(aq) + 2e-               | $\rightleftharpoons$ | $HCHO(aq) + H_2O(l)$      | +0.06 |
| 8               | Cr3+(aq) + 3e-                          | $\Longrightarrow$    | Cr(s)                     | -0.74 |

Table 6.1

See Table 6.1 and notice that HCOOH can behave as a reducing or oxidising agent

- 1. A cell is made based on systems 1 and 6. Write the equation for the reaction that would take place
- 2. A cell is made based on systems 1 and 7. Write the equation for the reaction that would take place
- 3. Write the overall balanced equation when Cu<sup>2+</sup> is reduced by HCOOH
- 4. Write the overall balanced equation when Cu is oxidised by HCOOH
- 5. Which species can reduce Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> but cannot reduce Fe<sup>3+</sup>? Justify your answer